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Abstract 
Two carbonatitic mineral assemblages, calcite + wollastonite and calcite + monticellite, which are 

encapsulated in two diamond grains from the Rio Soriso basin in the Juina area, Mato Grosso State, 

Brazil, were studied utilizing the NanoSIMS technique. The assemblages were formed as the result of the 

decomposition of the lower-mantle assemblage calcite + CaSi-perovskite + volatile during the course of 

the diamond ascent under pressure conditions from 15 to less than 0.8 GPa. The oxygen and carbon 

isotopic compositions of the studied minerals are inhomogeneous. They fractionated during the process 

of the decomposition of primary minerals to very varying values: 18O from −3.3 to +15.4‰ SMOW and 


13C from −2.8 to +9.3‰ VPDB. These values significantly extend the mantle values for these elements 

in both isotopically-light and isotopically-heavy areas. 

 

Introduction 
Over the last two decades, the mineralogical composition of the Earth’s lower mantle has become 
known from mineral inclusions in diamond (e.g., Harte, 2010; Kaminsky, 2012; Harte and Hudson, 2013 
and references therein). However, the isotopic characteristics of lower-mantle mineral associations have 
been poorly studied to date.  Only two ion microprobe analyses from a grain of CaSi-perovskite within 

lower-mantle diamond have been performed; they have yielded values of 18O at 4.92 and 6.95‰ 
SMOW (Harte et al., 1999).  The former is close to the average mantle value, while the latter is shifted in 
the supracrustal values.  
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Our knowledge of isotopic “average mantle values” of carbon and oxygen is mainly based on, and can be 

applied to, only the upper-mantle reservoir. The high-precision determination of the upper-mantle 

oxygen isotopic composition yielded the average value of 18O = 5.3±0.6‰SMOW (Valley et al. 1998; 

Spetsius et al. 2008; Wang et al. 2011; Kostrovitskii et al., 2012; Giuliani et al., 2014). The range of the 

upper-mantle carbon isotopic composition is from −2 to −8‰ 13C VPDB, while for the lower mantle the 

range is suggested to be wider, from −0.5 to −8.5‰ 13C (Cartigny, 2005). A detailed study of lower-

mantle diamonds from Juina (Brazil) and Kankan (Guinea) confirmed the similarity of the lower-mantle 

and the upper-mantle carbon isotopic compositions (Palot et al., 2012).   

We report here the first results of oxygen and carbon isotope analysis of other minerals identified in 

lower-mantle diamonds (Kaminsky et al., 2009; Wirth et al., 2009) utilizing the NanoSIMS technique. 

Samples and analytical method 
This study investigated mineral inclusions encapsulated in two diamond grains from the Juina area, 

Mato Grosso State, Brazil. Both diamonds were extracted from the same prospecting sample #8 

collected within the Rio Soriso basin (see Fig. 2 in Kaminsky et al., 2009).  These inclusions are daughter 

minerals, formed as a result of the decomposition of the initial carbonatitic association and form two 

assemblages:  calcite + wollastonite II and calcite + monticellite (Fig. 1).  Calcite and wollastonite II were 

analyzed within a 4×4 μm rhombic-shaped inclusion in diamond #8/103, foil #1734 (Kaminsky et al., 

2009). Calcite forms the matrix of the inclusion occurring as a polycrystalline aggregate with individual 

crystals on the order of 1–2 μm each (Fig. 1a). Its composition is essentially CaCO3 (Ca=99.26 at. % of the 

cation group), with an admixture of Sr (0.74 at. % of the cation group) and trace quantities of Ba. Such 

Sr-enriched calcite is considered to be primary magmatic (e.g., Armstrong et al., 2004). Wollastonite II 

(high) was identified from its diffraction pattern; it occurs along with nyerereite and a Ca-garnet.  The 

wollastonite II forms several near-euhedral grains, 50–500 nm in size. The chemical composition of 

wollastonite II is (in at. %): Ca=49.7, Si=50.1, and Fe=0.2.   

The calcite + monticellite assemblage was studied from diamond #8/104 (foil #1598) (Wirth et al., 2009). 

This plate-like inclusion, only a few micrometers in length and ca. 200 nm thick, is composed of calcite, 

that comprises the bulk of the inclusion, and sub-micrometre-sized monticellite, cuspidine, wollastonite 

II, metallic alloys, amorphous material with a C-Ca-Si-O composition, and minor fluid bubbles, 5–50 nm 

in size (Fig. 1b). The calcite, as in sample #8/103, is polycrystalline, with an average grain size of 

approximately 1–2 μm. However, in this sample, the chemical composition of the mineral is that of pure 

calcite, that may be explained by its recrystallization. Monticellite (identified from its diffraction pattern) 

has a composition of (at. %): Si=29.8, Fe=11.4, Mg=23.9, and Ca=33.6, with minor admixtures of Al (0.7), 

Ti (0.3), and Mn (0.3).   

Both diamonds belong to the same geological sample, ~0.5 m3 in size. Both studied mineral assemblages 

in these diamonds belong to the natrocarbonatite association, in which nyerereite (Na,K)2Ca(CO3)2 forms 

the matrix of the inclusion (Kaminsky et al., 2009, 2015).  
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The major challenge for isotopic study of these mineral grains was their very small, sub-micrometre, 

sizes. We performed the analysis of the samples utilizing a NanoSIMS 50 instrument at the Lawrence 

Livermore National Laboratory, USA. We measured the carbon and oxygen isotope compositions of 

minerals from the same FIB foils that had previously been examined by TEM at the 

GeoForschungsZentrum Potsdam, Germany (Fig. 1). Oxygen and carbon isotope abundances were 

determined using a focused primary 0.3 pA Cs+ beam, ca. 60 nm in diameter, which was rastered over a 

4×4 μm2 area to produce quantitative secondary ion images. Each ion image was subdivided into calcite, 

silicate and diamond regions (Fig. 2), which were analyzed separately. An electron flood gun was used 

for charge compensation. Secondary ions were acquired by simultaneously measuring 12C−, 13C−, 16O−, 
18O− and 28Si− on electron multipliers at a mass-resolving power of ca. 3600. Isotope ratios were 

determined with the L’Image software developed by L. Nittler, Carnegie Institution of Washington, DC. 

One could expect the quasi-simultaneous arrival (QSA) effect on C isotopes (Slodzian et al. 2004). 

However, in our experiments, no variations of the instrumental fractionation factor with count rates 

were observed. Further an admixture of Sr (0.74 at. %) and a trace quantity of Ba are not so high as to 

influence the O isotope composition (Valley and Kita, 2009). Other elemental impurities (Mg, Fe, Mn) in 

the studied calcites are well below 1 at. %, so the results do not need matrix correction (Rollion-Bard 

and Marin-Carbonne 2011). Instrumental mass fractionation was assessed from two calcite standards 

and the UW-2 garnet standard; they cover the 22 % of 13C composition range. The external precision on 

the standards (84 hrs time) was <4‰ for 18O and <9‰ for 13C (2σ). 

Results 
The results obtained in our study were very surprising (Table 1). Against the expected mantle values, the 


18O values for the calcite + wollastonite II assemblage vary from −1.6 to −3.3‰, and for the calcite + 

monticellite assemblage from +15.0 to +15.4‰SMOW. The 13C values for calcite are −2.8‰ in foil 

#1734 (in association with wollastonite II) and +9.3‰ VPDB in foil #1598 (in association with 

monticellite).  Both carbonate-silicate assemblages are in isotopic equilibrium, having similar 18O values 

for both mineral phases in each sample. At the same time, there are significant differences in the 

isotopic characteristics between the two samples: =12.1‰ for carbon and  =16.6–18.7‰ for oxygen.   

Large error values (6.0–6.1‰for carbon and 4.3–8.2‰for oxygen) include not only analytical errors, but 

(mainly) isotopic inhomogeneity of samples at the nano-scale level, which is well seen in Fig. 2a and b, 

where isotopic variations in a ~2 μm calcite grain, reflected in counts per second, vary within ~3,000 ct/s 

for 12C and ~100,000 ct/s for 16O, that significantly exceeds the analytical errors. The isotopic 

heterogeneity of mantle minerals has been observed at both the centimeter- and micrometer-scale. For 

example, a study of a single diamond-bearing peridotite xenolith revealed that, within a volume of only 

27 cm3, the variations for nitrogen content, nitrogen aggregation state, carbon and nitrogen isotopic 

compositions, respectively, cover 64, 75, 15 and 23% of the ranges known for all peridotitic diamonds 

(Thomassot et al., 2007). Carbon isotope compositional variations within a single diamond crystal reach 

10‰ 13C and more (Kaminsky and Sobolev, 1985). At the nano-scale the isotopic variations appeared to 

be even greater. Diamond #8/106 from Rio Soriso was studied for isotopic composition with NanoSIMS 

analysis at the Center for Advanced Marine Research, Ocean Research Institute at the University of 
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Tokyo; 15 spot measurements of 13C in the diamond were found to vary from −14 to −25‰ VPDB, with 

an average at −19.40±3.22‰ (Wirth et al. 2007). The isotopic study of 15N in other diamond crystals 

from the Juina area in Brazil, performed with the use of a Cameca IMS ion microprobe at the 

Department of Terrestrial Magnetism, Carnegie Institution of Washington, USA, produced results with 

one-sigma value of ±3‰ (D. Araujo, pers. comm.). This means that the ‘error values’, in fact, are mainly 

ranges of isotopic heterogeneity for the studied samples. The real analytical errors are less than 0.4–

1.7‰ (see Table 1 and Fig. 4); these values include as well, possible isotopic fractionation between 

coexisting carbonate and silicate phases, which is particularly significant under low, subsolidus 

temperatures (100–500 °C) during the course of secondary alteration of the minerals (see below). 

Discussion and Preliminary Conclusions 
In both analyzed samples calcite is the major mineral. Calcite in sample #1734 is enriched in Sr and, 

partly, in Ba. Such calcite is inferred to be primary-magmatic (e.g. Armstrong et al., 2004), and its 13C 

value (−2.8‰) is close the range typical of mantle values. Its origin may be attributed to the lower 

mantle. Earlier, in diamond from the Rio Soriso area, calcite was found in a close (‘touching’) assemblage 

with walstromite-like CaSiO3, formed after decompressed CaSi-perovskite, which is typical of the lower-

mantle association (Brenker et al., 2007). One of the studied samples #8/103, in the same foil #1734, 

contains small (less than 100 nm), euhedral nano-inclusions of wüstite (Mg#=1.9–15.3) in association 

with periclase (Mg#=84.9–92.1) (Fig. 7 in Kaminsky et al., 2009). The coexistence of these phases implies 

their formation under pressures at or greater than 85 GPa and temperatures in excess of 1000 K 

(Dubrovinsky et al., 2001); i.e., within the lowermost part of the lower mantle. This conclusion is 

confirmed by the identification, in the same diamond, of the assemblage of iron carbides, Fe3C, Fe7C3 

and Fe23C6 with native iron and graphite, which crystallized within a pressure interval of 50–130 GPa 

and, possibly, have their source in the outer core or within the D” layer of the lowermost part of the 

mantle (Kaminsky and Wirth, 2011).  

The other minerals, found in association with calcite, are stable at much lower pressures and 

temperatures.  Wollastonite forms as a result of the decomposition of CaSi-perovskite, which starts at 

ca. 15 GPa with the formation of titanite (CaSi2O5), larnite (Ca2SiO4), walstromite (CaSiO3), and then, at 

ca. 4 GPa, wollastonite (CaSiO3) (Akaogi et al. 2004).  Further uplift and resultant decompression to 

levels where pressures were less than 0.8 GPa initiated a reaction of wollastonite + fluid to form 

cuspidine + monticellite. This reaction should have occurred at comparatively low pressures because it is 

known, from experiments exceeding 0.8 GPa and 1450 °C, that monticellite breaks down to merwinite + 

forsterite (Kushiro and Yoder, 1964). Unfortunately, little is known about the pressure–temperature 

stability of cuspidine.  Cuspidine was reported to occur in calc-silicate xenoliths from the Bushveld 

Complex, South Africa which had peak pressure–temperature conditions of 0.11–0.24 GPa and >1200 °C 

(Buick et al., 2000). The formation of cuspidine and monticellite is the latest-stage event during transit of 

the host diamond. The existing grains of wollastonite-II found as an inclusion in foil #1734 are 

metastable relics which were preserved in a closed system. After the consumption of fluorine, the 

formation of cuspidine at the expense of wollastonite stopped, and the present-day mineral assemblage 
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is observed. The quantity of monticellite within the inclusion was limited by the availability of Al and Mg 

(Wirth et al. 2009).  

Based on the data obtained, the major trends in the behavior of O and C isotopes during the 

decomposition of the primary lower-mantle mineral association may be preliminarily marked.   

The 18O SMOW values of the studied assemblages, compared with 18O values of other diamond 

associations worldwide, are much dispersed, ranging from −3.3 to +15.4‰ (Fig. 3). They exceed not only 

values for the upper mantle (from +4.7 to +5.9‰, after Valley et al. 1998), but all other analyses of 

primary mantle minerals. To our knowledge, there are no isotopic characteristics for carbonatitic fluid 

inclusions in diamond to date. Klein-BenDavid et al. (2010) performed isotopic analyses for C, N, Sr, Nd 

and Pb from samples of fibrous diamonds, in which diamond matrix predominates. Figure 4 presents the 


13C vs. 18O values for the investigated diamond inclusion assemblages, and compares these data to 

those from other mantle minerals and to the modified primary igneous carbonatite box after Srivastava 

et al. (2005). The samples, in their 13C – 18O coordinates, differ significantly from all previously studied 

kimberlitic and carbonatitic minerals.  Two models can be offered to explain this.   

The first model (A in Fig. 4) is an independent C and O fractionation for each sample from a single 

source. Sample #1598 has a very heavy oxygen isotopic composition, which, in other cases, for other 

mineral inclusions in diamond, has been explained by the involvement of crustal oxygen in the 

formation of diamond and associated minerals for the eclogitic association, as a result of deep 

lithospheric slab subduction (e.g., Jacob et al., 1994; Schulze et al., 2003, 2013; Ickert et al., 2013). 

However, the 13C value in the same sample contradicts this suggestion: eclogitic-type diamonds are 

commonly characterized not by heavy, but, quite the reverse, by light carbon isotopic composition, from 

−10 to −35‰ 13C VPDB. Only some eclogitic diamonds from New South Wales, Australia record values 

of −2 to +4‰ VPDB (e.g., Sobolev et al., 1989; Cartigny, 2005). Such great 13C values as those reported 

herein for sample #1598 (+9.3 to +15.4‰ VPDB), have no analogues in igneous and metamorphic rocks. 

The value of 13C in sample #1734 has another disagreement with known data on the isotopic 

systematics of diamond: while the 13C values are within the average mantle range, the 18O values 

(−1.6 and −3.3‰ SMOW) lie within a negative area, never before observed in diamond associations or 

terrestrial magmas (e.g., Criss, 2008). Such values are characteristic of only meteoric waters or 

metamorphic rocks that have been affected by such waters.  

Suggesting a similar origin for both diamonds and their inclusions (belonging to the same geological 

sample), their C-O isotopic characteristics may be considered as the result of a single process, and 

belonging to different stages in the decomposition of the primary lower-mantle mineral association.  In 

this case, an alternative model B (Fig. 4) may be suggested. The two samples should be considered as 

two ultimately differentiated values from an original single source, which had intermediate 13C and 


18O values lying between the two samples.  

The distinct compositions of calcite in the analyzed assemblages support model B. Calcite in sample 

#1734, associated with wollastonite II, is enriched in Sr and is primary-magmatic (e.g., Armstrong et al., 

2004); its 13C value (−2.8‰) lies within the range typical of mantle values. Calcite in sample #1598, 
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associated with monticellite, is chemically pure and has a very heavy carbon isotopic composition (13C 

=+9.3‰). It may be suggested that, during the ascent of diamond to the surface, wollastonite + 

remaining fluid, encapsulated in diamond, was dissociated into monticellite + cuspidine (see above). 

Such dissociation occurs at low, subsolidus temperatures (500 to 100 °C).According to the calculations 

performed by Wilson et al. (2007), the oxygen isotopic fractionation, in a closed kimberlitic system, 

within the temperature range from 1100 to 100 °C varies from 6 to 10‰. In this case, the 18O values 

change from the average mantle values of +5 ± 6‰to +12 and +16‰ respectively, which agrees with the 

observed 18O values in sample #1598. The unchanged primary mineral association (like in sample 

#1734) experienced a complementary isotopic effect resulting in a decrease of the 18O value.   

The entire mineralogical-geochemical history of the inclusions can be envisaged as follows: Initially, 

within the lower mantle a calcite + CaSi-perovskite + volatile inclusion was encapsulated within 

diamond, forming a closed micro-system.  During the ascent of the host diamond at ca. 15 GPa, CaSi-

perovskite decomposed, with the formation of titanite (CaSi2O5), larnite (Ca2SiO4), walstromite (CaSiO3), 

and then, at 4 GPa, wollastonite (CaSiO3) (Akaogi et al. 2004). During the final ascent at ca. 0.8 GPa, 

wollastonite, with the participation of the encapsulated fluid, dissociated into monticellite + cuspidine 

(Kushiro and Yoder, 1964; Wirth et al., 2009). The oxygen isotope fractionation took place mostly during 

the latest transformations, at low temperatures (500–100 °C).   

Some facts remain, however, unexplained. The suggested fractionation trend B (Fig. 4) with±2‰error 

lies outside of all known isotopic values for kimberlites, kimberlitic carbonates and primary igneous 

carbonatites (Fig. 4). In this case, the initial isotopic values for C and O in the lower mantle, as 

determined for the two analyzed samples, may be different to those of existing estimates for the upper 

mantle.  Alternatively, the obtained data can be considered as the result of local fluctuations within a 

heterogeneous mantle (e.g., Rampone and Hofmann, 2012). Further isotopic studies of lower-mantle 

minerals will help to explain better these unusual data. 
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Figure Captions 
Figure 1.  HAADF TEM images of the studied associations: a) calcite (Cc) + wollastonite (Wo II) 

association from inclusion in diamond #8/103, foil #1734; b) calcite (Cc) + monticellite + wollastonite 

(wo) + cuspidine (Cus) association from inclusion in diamond #8/104, foil #1598. The bright spots in 

diamond indicated by white arrows are native iron (left) and iron + manganese (right). 

Figure 2.  Ion images of the isotopic ratios of 12C, 16O and 28Si in sample #8/104 (foil #1598). White (black 

for 18O) lines outline the counted areas of the mineral grains. Dia – diamond, Cal – calcite, Mtc – 

monticellite. Color bars indicate yield of ions (intensity of response) in counts per one second (ct/s). The 

scales are set by the image processing software 

Figure 3.  Values of 18O for mantle minerals of diamond facies. Analyses of ultramafic association 

minerals after Mattey et al. (1994); Lowry et al. (1999); Spetsius et al. (2008); analyses of eclogitic 

association minerals after Deines et al. (1991); Jacob et al. (1994, 1998); Snyder et al. (1995); Lowry et al. 

(1999); Schulze et al. (2003, 2013); Viljoen et al. (2005); Spetsius et al. (2008); Ickert et al. (2013). 

Analyses of zircon from kimberlites after Valley et al. (1998) and Page et al. (2007). Number of analyses 

is shown in brackets at mineral names: Ol – olivine, Opx – orthopyroxene, Cpx – clinopyroxene, Grt – 

garnet, Coe – coesite, Cal – calcite, WoII – wollastonite II, CaSiPrv – CaSi-perovskite, Mtc – monticellite. 

Data on lower-mantle CaSi-perovskite from Harte et al. (1999). Shaded area is the “garnet mantle 

region” after Valley et al. (1998). 

Figure 4.  Isotopic composition of oxygen and carbon in lower mantle minerals. Modified primary 

igneous carbonatite (PIC) box (red) after Srivastava et al. (2005); the field of carbonatites worldwide 

after Tappe et al. (2008); the upper-mantle 18O area after Valley et al. (1998); the upper-mantle  13C 

area after Cartigny (2005). Field of primary carbonates in kimberlites after Wilson et al. (2007). 

Explanations in text. 
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Table 1.  Values of 18O and  13C in carbonate and silicate inclusions. 

Sample, mineral 
18O±1σ,‰ SMOW 

 13C±1σ,‰ VPDB 

Foil #1734   

    Calcite -3.3±7.0 -2.8±6.0 

    Wollastonite -1.6±8.2  

Foil #1598   

    Calcite +15.4±4.3 +9.3±6.1 

    Monticellite +15.0±6.5  

 


